FLT3 single chain antibody

【No.】IAB011A 【Antibody name】 FLT3 single chain antibody
【Antibody subtype】human IgG1 【Use】FACS
【Packing specification】100μg/tube 【Mode of transport】-20°C transportation

FLT3 belonging Ⅲ receptor tyrosine kinase family (receptor tyrosine kinase Ⅲ Family, the RTK Ⅲ) . The members of this family also include c-KIT receptor, platelet-derived growth factor receptor and c-FMS receptor, etc. The genes of each member of this family have high homology. FLTS contains 5 extracellular ligand binding domains composed of immunoglobulin poplar structure, 1 transmembrane domain, 1 intracellular proximal membrane domain, 2 kinase domains separated by insertion domains, and a C- terminal- Structure domain [1] . FLT3 is expressed in liver, spleen, lymph, brain, placenta and other tissues , and plays an important role in the proliferation, differentiation and apoptosis of hematopoietic stem cells, pre- B cells, and dendritic cells. [2] In addition, studies have found that the onset of acute myeloid leukemia is often accompanied by abnormal activation of FLT3 [3] , so FLT3 may be used as a potential therapeutic target for acute myeloid leukemia . This product is an antibody targeting FLT3 , which can be used for overexpressionFlow cytometric detection of FLT3 recombinant cell line and detection of recombinant protein activity.

Product name: FLT3 single chain antibody

Reactivity: human

Tags: Fc tag

Subclass: human IgG1

Purification method: affinity chromatography

Storage system: PBS, pH 7.4, 20% glycerol

Storage conditions: -20°C refrigerator, avoid repeated freezing and thawing

Illustration: Lane M on the left is: protein MW marker, Lane 1 is: 2ug FLT3 single-chain antibody;

The right picture shows the FACS detection of FLT3 antibody binding to FLT3 overexpressing recombinant cell line.

Reference materials:

1. Genomic structure of human Flt3: implications for mutational analysis

2. Flt3-dependent transformation by inactivating c-Cbl mutations in AML

3.Flt3-ITD and tyrosine kinase domain mutants induce-distinct phenotypes in a murine bone marrow transplantation model